HUNTING
FORSOTI

The Equation Group’s advanced
boot loader exposed

—
F-Secure. Q¥

CONTENTS

WAt IS SOTI? oo 3
HOW SOTIWOTKS ..o 3

How a windows 7 system bootS. ..o 3

How SOTI affects the early boot records in Windows 7............... 5
DEteCHING SOLI 1.viiiiiiii i 1
CONCIUSION ..o, 13
SOUMCES et 14

F-Secure | Hunt for SoTi

NB: This research is a follow-on from our previous piece, Hunting for KillSuit.

WHAT IS SOTI?

SolarTime (SOTI) is an advanced bootloader persistence mechanism used by The Equation Group
as part of their frameworks, including within the Dandersprtiz framework that was exposed

by The Shadow Brokers in 2017. The framework containing SOTI can be used in conjunction

with the Killsuit (KiSu) post-exploitation modular component, allowing an attacker to persist
their PeddleCheap (PC) agent across reboots. SOTI is the only persistence mechanism for this
framework that still works on a modern version of the Windows OS; however, it is mitigated if

the unified extensible firmware interface (UEFI) is used place of the standard basic input/output
system (BIOS).

Other persistence mechanisms that are ineffective beyond Windows XP include driver installation
persistence and JustVisiting (JUVI), which is XP specific. Driver persistence does not work
beyond XP as driver signing became mandatory in future versions of the OS, thereby making the
persistence mechanism fail. SOTI, however, uses firmware-level manipulation in order to create
an advanced bootloader to the attacker’s agent on the host that works at least up to Windows 7.

HOW SOTI WORKS

How a Windows 7 system boots

Part of understanding SOTI’s persistence is refreshing ourselves on how Windows 7 boots. The
figure below shows the general flow. We are going to review this legacy boot process and discuss
how SolarTime (SOTI) affects the boot system of a Windows 7 x64 machine. We will not be
exploring UEFI, for example, as it can obscure the underlying concepts we aim to explore.'

Bootloader
The PC is turned on The MBR loads code

& the BIOS intialises from the bootsector The bootsector

the hardware The BIOS calls code of the active loads & runs the
stored in the MBR at partition bootloader from

the start of disk 0. : its fi
e start of dis Active its filesystem

partition

Figure 14: https://neosmart.net/wiki/mbr-boot-process

F-Secure | Hunt for SoTi 3

https://neosmart.net/wiki/mbr-boot-process/

When a computer is powered on, the BIOS performs some self-tests and hardware initialization
before loading the Master Boot Record (MBR) into memory. The MBR is responsible for
determining the active partition of the bootable hard drive. The structure of the MBR starts with
OX1BE bytes of boot code followed by four partition tables. The MBR then parses the partition
tables to determine which Volume Boot Record (VBR) should be read into the system. It then
overwrites itself in memory with the VBR.

The VBR contains further information about the partition and is responsible for loading the
Initial Program Loader (IPL). It starts with 2 bytes of jmp instruction that jumps to the code that
performs various checks. The bytes below the jump instruction contains the OEM ID 'NTFS'
and the Bios Parameter Block (BPB), which contains information about the NTFS volume such as
SectorsPerCluster and ClustersPerFileRecord.

seghd: TCBaa gl segment byte public "CODE" wseld

seghea: 7Cee assume c5:scgled

SEgBea: 7Cee rg 7C00

Segbse: 7C0e assume es:nothing, ss:mothing, ds:nothing, fs:nothing, gs:nothing
seghd: TCB8 EB 52 jmp short checkIntl3Extensions

segood: 72 I

SEgoed: TCR2 99 nop

Seghea: rie2 I

vepBda: TCR3 4E 54 45 53 20+aNtfs db "NTFS 50 [F

seghad: TCRC 82 db 2

seghod: TCeD o8 db B
5 QE B2 db @ ; DATA MREF: seg@@d:TCG64w

seghoa: 7CEE e db @

Figure 15

At the end of the VBR, control is transferred to the IPL. The IPL occupies 15 sectors of 512 bytes
each and is usually allocated right after the VBR. It parses the filesystem and loads the bootmgr
into memory — hence, it is also sometimes called ‘the bootmgr loader”. The following figure
shows the first few bytes of the IPL.

gooe7Eons [00 42 86 4F 00 4F 80 5S4 00 4D 00 47 068 52 08 ..B

AAPA7EIN ©O4 9O 24 @0 49 DO 33 A0 30 00 00 EM 00 00 68 380 .. §.1.
GOOB7E20 00 OO OO0 60 00 0O 0D GO OD OO OO OO OO0 G0 68 080
00@O7EZR 0O 00 00 00 00 00 OO OO0 OO0 OO0 0D 00 00 00 BB 00cc0enean
OBBOYELD OO OO OO0 G0 00 0O OO B0 OO 0D 0D OO 00 00 B0 00

OA@O7ESD 0O 0D 00 Q0 00 00 EB 70O 90 90 05 00 E 00 5% A0 dp....N.T.
OOBOYEGD 4C OO 44 00 52 00 60 60 OO0 OO 0D OO0 00 00 60 00 L.D.R...........
AAARYEYR 00 A0 A0 B0 00 00 00 B0 OD 00 AD 6F 66 27 A3 38 dof '8
GOBB7EES E9 11 88 F3 9C B6 D@ FD A6 72 FF FF 80 80 88 08 T.8=F£)-*2r--....
OOOBYESD 06 OO 00 00 06 00 24 B0 4F 00 62 00 6An 00 49 B0 $.0.b.4.1.

DOBB7EAD 64 DO B2 60 24 00 LF 60 OO0 00 0D 0D 60 60 68 00 d...5.0.........

Figure 16

The bootmgr then manages the boot process and waits until a boot option is chosen before
passing control to winload.exe to load the kernel and the boot start drivers.

F-Secure | Hunt for SoTi

How SOTI affects the early boot records in Windows 7

In 2015, Kaspersky published a report on a bootkit termed "GrayFish" that reflashes the hard drive
firmware before infecting the VBR. It was later found out that "GrayFish" is actually SOTI.

GrayFish architecture

BBSVC service

Shellcode from
registry

. x1000 SHA-256
+ AES
Encrypted container Exploit for Elby

file + Pill driver + loader (jump
into kernel mode)

Load platform kernel
mode orchestrator

(fvexpy.sys)

Load user-mode part
from registry
(mpdkg32/64.dll)

Start payloads
(registry)

This particular bootkit is initially loaded from a modified VBR and IPL. It then waits for winload.exe

Figure 17

to load, and patches the first legitimate driver with a malicious payload. We will now analyze the
infected VBR in detail, using IDA Pro’s Remote GDB debugger to analyze an infected Windows 7
x64 SP1Virtual Machine.

In a normal boot, the MBR is loaded at 0000:7C00, and proceeds to overwrite itself with the VBR.
If you put a breakpoint at 7C00, the first run will present you with the MBR, and the second will be
the VBR. The VBR starts with a jmp instruction.

MEMORY - 80887CH2 nop

MEMORY : 00807C03 dec esi

MEMORY : 88887 C B4 push esp

MEMORY : 88087CH5 inc esi

MEMORY : 80807C06 push ebx

MEMORY : 88B867G87 and [eax], ah

HMEMORY - 60887CH9 and [eax], ah

MEMORY : 00007COB add [edx], al

MEMORY : BABB7C6D or [eax], al

FEHNRUS A A7 AR ————

Figure 18

F-Secure | Hunt for SoTi 5

This jumps over the BPB to the address 0000:7C54, checks for INT 13 extensions, reads drive
parameters, loads the 15 sectors of IPL into 0000:7EQ0, and finally checks for support for Trusted
Computing Group (TCG) using BIOS interrupt 13 before passing control to the IPL.

The figure below shows a normal VBR on the left vs VBR infected by SOTI on the right. At the
end of the VBR are multiple error strings used to inform the user if something goes wrong e.g
bootmgris missing. If an error is shown, the system will prevent execution via the hlt instruction.
However, in SOTI, the hlt instruction is overwritten and therefore disables the disk error

reporting.
loc_7D6A:] @ loc_7D58:
o
mov al, ds:1F8h mov al, ds:1Fgh
loc_7DeD: @ loc_7D5B:
call sub_7D79 l call sub_7D&6
mov al, ds:1FBh mov al, ds:1FBh
call sub_7D79 =] call sub_7D&6
loc_7D76: @ loc_JD64:
hlt l jmp short loc_7D64
sub_7D1D endp sub_7D1@ endp
B e e e e e e e =
jmp short loc_7D76 l
Figure 19

In a clean boot, the VBR passes control to the IPL code at address 0000:7E7A. SOTI overwrites
7E7A with malicious data that is used for decryption purposes later and so jumps to a different
address to run the IPL.

loc_7DeD: A loc_7DeB:

XOr ax, ax

mav di, 1828h

mov cx, BFDBh

cld nop

rep stosb nop

jmp loc_7E7A Jmp sub_7ECS
Figure 20

The IPL parses the NTFS filesystem and knows how to read MFT File Records as well as check their
data integrity. It reads the $MFT File into memory to start finding out the location of the bootmgr.
Some basic functions for reading and parsing the $MFT file are modified by SOTI to perform

the loading of its malicious bootpack, so they do not need to be re-implemented by SOTI. An
example is the function below, which performs the search for the first Index Node Header of the
$INDEX_ROQT attribute of the MFT file. A clean boot stores the base address of $INDEX_ROOT in
ds:232 and uses this function to search for the file with the filename "BOOTMGR". However, SOTI
escapes the filename check by setting the register ecx as a flag. If ecx is 0, SOTI passes in its own
$INDEX_ROOQT located at ds:2B4 instead.

F-Secure | Hunt for SoTi 6

sub_B7DF proc near ; CODE 3 sub_889C proc near

3 segbit
push eax push eax
push ecx push ecx
mav edx, eax mov edx, eax
=] or ecx, ecx
jnz short loc_B88AE
mov eax, ds:2Bah
jmp short loc B8B2
loc_BB8AE:
mov eax, ds:232h mov eax, ds:232h
@ |
l loc_ssB2:
lea ebx, [eax+l8h] lea ebx, [eax+18h]
add ax, [ebx+4] add ax, [ebx+4]
lea eax, [eax+18h] lea eax, [eax+1@h]

Figure 21

The main purpose of the IPL is to load the bootmgr code into memory, which starts with the
signature E9D501EB0490000000528BC30EQ76633. It starts by searching through the $INDEX_
ALLOCATION attributes of the $MFT file, getting a list of all the subnodes of $INDEX_ROOT,
and locating the bootmgr index record. The bootmgr index record indicates the logical sector
number in the disk where bootmgr is located and loads the bootmgr into the address 0x20000.
Immediately after the bootmgr is loaded, SOTI is seen altering the control flow and injecting a
jump into a chunk of its own malicious code where it begins to load its bootpack from the drive.

rmpg e ——

e gBie : BADa loc_BaDé: ; CODE XREF: sub_TECB+1C@T
iegBbe 1 BeDe 67 66 BF B7 58+ mowzx ebw, word ptr [eax+oih]

;:EBBE;B(BDG E6 Bl E3 FF o8&+ and ebx, BFFh

iegdde: BeDD BF B5 55 & jnz loc_BD3A

iegBpe 1 BOE1 66 BE DB mo ebx, eax

(egobe BOE4 G BB 28 puzh

iegoRe BOET &7 pop [+

(ego0 : BOER assume es:nothing

(Egode BOES 656 2B FF sub edi, edi

ieg@do:BOEB 66 Al IE @2 mo eax, ds:23Eh

(eg@e : BOEF EA 33 @1 call rr'.:dlilr:il.rr'.-'lrrnrd'i:nETnI].:fﬂHun ; loads bootmgr to address 20068
(egeReBOFl 68 B0 20 push hK

iegea BOFS 87 pop es

iegoRR: BOFG 66 2B FF sub edi, edi

iegdde: BOF 66 Al IE 82 mo eax, ds:23Eh

iegPee:BOFD E3 68 8B call sub_BCES

;egBeR: B1e E9 AB 12 im| loc S3AE ; inserted malicious jump
iege00 5100 SBTEGE endp § speanalysis failed

Figure 22

The first thing SOTI does after the jump is to use BIOS interrupt 15 to query the system address
map and find out the type and length of memory available above 1MB. This information gathered
is used to determine if the addresses are free to load its bootpack. To access memory above 1MB,
SOTI also enables the A20 line. After all checks passes, SOTI begins the process of loading several
MFT File Records to find the location of its bootpack.

One of the MFT File Records loaded into memory is the $Objld file. This file contains all of the
$OBJECT_ID Attributes in use in the volume. The $INDEX_ROOT of an $Objld file has the filename
"$O". As this file isn't loaded in the usual boot process, the string "$O" is not in the data section of
the IPL (the strings are used when looking for the right file to load into memory). Therefore, SOTI
injects its own set of data after the usual IPL data at 0000:7E7A.

F-Secure | Hunt for SoTi 7

segBie:
SEghBa
seghi:
SEEbbe:
Sephda:
(A E
Lo ERa :
e Ehie ;
SCEd
Sephi
SeEhe
Seghi
Seghde:
SeghBa:
SEEhBe
SEEBRE:
SCEDB:

BSAD
ESBE®
ESBE
BOEC
BSBE
BSBE
ESBE
BOBI

B9BE
BOBE
B9BE
BSBE
BSBE
B9BE
BSBE
B84
89LA

Figure 23

BB
GE
GE
EE

BB

33 D2

BA

E7F

L 12

&E
a2

b7 @l

L]

Bz

B

loc_B9BE:

BOWVIN
moy
imp

edi, odx

ecx, word ptr ds:218h ; 4 = length of string “5138°
edi, ; offset of string “§138°

short loc B9CA

138,
; malware changes paramecters and makes the
function compare with string “$0°

: thiz addresz stores length of "$0°

malware makes zure this will be
; executed if indtial value of edux is @
ed, ; offset of string "$07

Findartribhutak

SOTI loops through the Index Entries of $Objld file to find the index entry. The following figure

shows the structure of an Index Entry from the NTFS documentation:

$O Index

I N R S

0x00
0x02
0x04
0x08
Ox0A
0x0C
OxOE
0x10

0x20
0x28

0x38

0x48

Figure 24

NN NN NN N

16
16
16

0x20
0x38
0x00
0x58
0x10

0x00

Standard Index Header
Offset to data

Size of data

Padding

Size of Index Entry

Size of Index Key

Flags

Padding

Key | GUID Object Id

Data | MFT Reference

Data | GUID Birth Volume Id
Data | GUID Birth Object Id
Data | GUID Domain Id

At offset Ox10 is the GUID Object Id of the index. SOTI compares this value with the object ID
stored at address 0000:7E7A. Should the values match, SOTI would load the File Record of the
bootpack by referring to the MFT Reference at offset 0x20. In the system that we were testing,

the file record belongs to a truetype font file named "davidbi.ttf".

F-Secure | Hunt for SoTi

BB 61 0O OO 60 04 OO GO OO 0O GO GO B0 68 BB BB [......ceccennn=
B5 00 00 68 3D 89 61 B8 O8 00 A0 00 60 0O 60 BB ... =Leaa.a
m B0 B0 60 60 00 00 B0 ©0 00 00 60 B0 68 A0 BBc....
48 00 00 B0 18 00 68 B8 2B DY B4 AB 2B B4 CA A1 H....... ++ e -
DD 88 3% 25 8C EA C? A1 3A EO 51 12 B4 CC D4 B1 [C9%.0+.:a0.])+.
2B D9 04 AB 2B B4 CA B1 20 00 00 GO 00 00 00 BB ++ %+ - -
00 00 00 OO A0 OO0 60 GO OO OO0 6O 60 ED B1 6O B8 Fooo
60 00 0O OO OO 0O 6O 6O 16 44 FC 61 6O 6O 6O A D|-...-
30 DO 0D PO 7O 0O OO GO 0O 0O A0 A0 B0 60 B2 BB B...P.-ceceenana
GB 00 00 00 18 00 01 B OB O7 A0 00 B0 B0 M1 BB N.......cc.eaaaa
58 F9 45 12 B4 CC D& 61 58 F9 45 12 B4 CC D4 81 X-E.!}
58 F9 45 12 B4 CC D4 61 58 F9? 45 12 B4 CC D4 61 X-E.}|
A0 A0 AD AO AOD OO AN AR 0O OO AD OO PO BO AA BB ccieeana
20 00 A0 B0 AD B0 A0 A OB B3 64 B8 61 B0 76 BB -......... d.a.v.
69 B0 64 A0 62 B0 69 BO 2E A0 74 6O 74 00 66 B0 i.d.b.i...E.E_F.
4B B0 00 B8 2B OO 60 BB OO OO A0 08 B0 B0 B3 BB E.. (... ... a...
18 B8 00 88 18 B0 88 B8 A8 6F 66 27 A3 38 E? 11 A0F G8T.
B8 F3 9C B6 DB FD A6 72 8O 60 60 68 48 8O B B8 E=F£!-23r(...H...
81 60 09 68 A B0 64 BB OO B0 A0 08 B0 B0 BB BB aa.a

OF B0 60 60 60 OO 68 60 4O 00 60 60 B0 OO 6B B8 @.......
68 09 81 OO B0 B0 68 B0 97 FF 00 GO ©9 08 08 B8 [T
Figure 25

If you ran check_soti.py in your DdSz machine, the output shows that the SOTI Container for the
kernel driver is "davidbi.ttf".

Figure 26

Looking at the source code of check_soti.py, the variable SOTIContainers defines the various
names that the malicious kernel driver container could take and “davidbi.ttf” is in the list.

SOTIContainers =
['consolad.ttf,
'davidbi.ttf,
'georgiad.ttf)
‘palabd.ttf,
'tahomabi.ttf,
'timesbc.ttf
‘trebucbc.ttf,
'verdanad.ttf']

https://github.com/misterchOc/shadowbroker/blob/master/windows/Resources/Ops/PyScripts/check soti.p

F-Secure | Hunt for SoTi

https://github.com/misterch0c/shadowbroker/blob/master/windows/Resources/Ops/PyScripts/check_soti.py

With the file record, SOTI then proceeds to read the encrypted file into memory.

GOAAAA @F CD 3B 85 F3 27 39 SF 12 A8 87 78 F1 BC 11 38 _-;3="9 _acxz..8
60018 BA 3D 94 88 37 66 9E 24 A7 41 62 F4 B4 29 9E 21 _=i87FPS2Ab(!)P?
6ope2e [IJ 28 34 43 5C B4 14 E7 A9 64 A1 B8 OB 86 6% DS h{A4C\!.t-di..3d+
600830 1D ED 1F BD E6 CA F1 C6 13 02 D4 DC 38 9F 16 E1 . F.+p-—%) ..+ BE.D
600048 61 DB 25 64 B2 CF 7D A9 7D B9 BS EF 3F 5D C6 AE a%d}-}-}]in?])«
GO0050 76 64 B6 75 BO C7 54 97 57 45 B? 40 95 9A 1E 9A wddu! | TOWE!@bU .U
600068 B4 @83 15 87 9A 46 96 38 50 84 E6 BA 7C F8 25 93 .. .cUF(8Pip.|°%5
600078 8B B2 CB CS F1 8D 58 17 5B 4E 2E EB 8D 8F 96 A7 1.-++.X.[H.F..ii2
600080 9B B2 35 90 8D BF 38 BF OB AA 78 F4 CC 11 1B B9 C¢!5._.+B..-p(!...
600098 BA BS D2 73 87 85 11 45 68 O7 56 99 12 D1 88 6F !!-sci.Eh.Ull.-.o0
6000A0 88 EC 46 DA A6 D1 2C CO 22 AC B6 2F 3F 91 2F 72 CBF+2- ,+"%! /7a/r
GOAOERM EF 8C 01 B3 BD 1F 53 41 77 88 79 12 62 69 61 CD ni.!+.SAw.y.bia-
6000CH FA 2F 9F 42 52 6E BE 97 5A 66 56 BC AS 8% BA BS - /EBRn+02fU+Ha. !
G00ADA FD 23 B9 F2 38 31 BS 6F CD OD DF 70 09 E8 97 4B *Hé=8B1!o-. p.FukK
GO00ED 39 E6 1B 6D CC B9 8D D6 OE DD BF B9 76 26 86 2A 9pu.m}!.+.}. . ukdix
GO0OFE DD CO FF BA 3E A F1 74 CE C6 50 09 4E 7E 3F 48 !+-!>ast+!P_H“7H
GO0108 A 42 24 CA 1E 19 F9 D4 6O 6A 64 4E 68 66 B1 8D JBS-..-+" jdNhF!.

L fai44 R ML kit WP AR MC AT CC DD rC CC B nAac onn W0 7 a0 (] = B e BT aa

Figure 27

SOTI decrypts the malware loaded into memory using an encryption key that was stored at
000O0:7E7A. The encryption key was generated by hashing the NTFS Object_ID 1000 times with
SHA-256.

int polynomial OxEDEE
int seed = OxFFFFFFFI

function InitializeTable()
table = new int[256]

for [1nt 1=255: 1>=8;

int index i

fer (int §=8; >0
1
p

'
if (index &
index = ~ polynomial
} else {
index >»=1

table[i] = index
}

return table

int[] table, byte[] message) {

function calculateHash{int start, int size,
int hash = seed
for{int i=s t; i<

hash = (hash >» B) * le[s i] ~ hash & Bxff])
]
return hﬂﬁq

After decryption of the malware, SOTI proceeds on to calculate the CRC32 hash for byte 5 to byte
OxEB1 of its bootpack. The figure below shows the pseudo code for the algorithm
Figure 28

SOTI then matches the hash with byte 1to 4 of its bootpack, presumably to check the file
integrity, before passing control to the bootpack.

F-Secure | Hunt for SoTi 10

DETECTING SOTI

If you have DanderSpritz installed in your machine, connect to a victim and run its internal check_
soti.py script. If SOTl is present, the script would inform you the exact SOTI container present in
the victim. Although precise, this method is rather inconvenient as it requires you to compromise
the victim through fuzzbunch before you can execute the script. A handier way is to scan the VBR
for abnormalities. As previously mentioned, SOTI modifies the section of VBR just before control
is transferred to the IPL. In a clean VBR (Windows 7 and above), the code zero-fills all the linear
memory locations from AA28 through B9FF. This is overwritten by SOTI and replaced with 2 nop
instruction before jumping to the new IPL location.

loc_7D80: A loc_7D@B:
xor ax, ax
mov di, 1828h
mav cx, OFD8h
cld nop
rep stosb nop
jmp loc_7E7A jmp ;ub_7ECB

One could simply scan the VBR for the two nop instruction in the VBR using Python. Here | have
a modified version of pyMBR written by hamptus. pyMBR parses the MBR and looks for the active
partition table. In the partition table structure, there is an element IbaStart, which contains the
first sector of the partition relative to the start of disk. This first sector is the start of VBR:

jE'.f g et _U br (ope _t—ju (

open(open disk, ' disk:
disk.seek(9)

disk.seek(sector = SECTOR_SIZE)
vbr = Vbr(disk.read(512))
vbr

F-Secure | Hunt for SoTi n

Since the loaded position of the nop instructions during boot is 0x7DOB, they will occupy be the
267th and 268th byte of the VBR (0x7DOB — 0x7C00). If these bytes are equal to 0x90, the host will
be marked as infected.

, data):
K struct.unpack(®<BB8", data[@:2])
soti_bytes struct.unpack(™<BB", data| 1 1)

bytes[@] f.soti_bytes[1]

sDesktopschecksotl. py x " WFPhysicalDreived

F-Secure | Hunt for SoTi 12

CONCLUSION

With the above, we have shown how SOTI hides itself in the boot section and how to detect

it. This method is used in every Windows 7 KillSuit installation due to its ability to bypass driver
signature enforcement. Its low-level persistence that started in the firmware shows that The
Equation Group has access to the hard disk drive (HDD) manufacturer’s proprietary information.
The high level of encryption also escapes detection from tools and anti-virus software. Prevention
would require manufacturers to sign the firmware, where verification of the firmware would fail
should anyone tamper with it.

F-Secure | Hunt for SoTi 13

SOURCES

https://www.cs.bu.edu/~goldbe/teaching/HW55815/presos/egngroup.pdf

https://www.youtube.com/watch?v=R5mgAsd2VBM

https://qithub.com/misterchOc/shadowbroker/blob/master/windows/Resources/Ops/PyScripts/
check soti.py.

http://www.irongeek.com/i.php?page=videos/derbycon8/track-3-17-killsuit-the-equation-

groups-swiss-army-knife-for-persistence-evasion-and-data-exfil-francisco-donoso

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064459/
Equation group questions and answers.pdf

F-Secure | Hunt for SoTi 14

https://www.cs.bu.edu/~goldbe/teaching/HW55815/presos/eqngroup.pdf
https://www.youtube.com/watch?v=R5mgAsd2VBM
https://github.com/misterch0c/shadowbroker/blob/master/windows/Resources/Ops/PyScripts/check_soti.py
https://github.com/misterch0c/shadowbroker/blob/master/windows/Resources/Ops/PyScripts/check_soti.py
http://www.irongeek.com/i.php?page=videos/derbycon8/track-3-17-killsuit-the-equation-groups-swiss-ar
http://www.irongeek.com/i.php?page=videos/derbycon8/track-3-17-killsuit-the-equation-groups-swiss-ar
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064459/Equation_group_qu
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064459/Equation_group_qu

Nobody has better visibility into real-life cyber attacks than
F-Secure. We're closing the gap between detection and response,
utilizing the unmatched threat intelligence of hundreds of our
industry’s best technical consultants, millions of devices running
our award-winning software, and ceaseless innovations in
artificial intelligence. Top banks, airlines, and enterprises trust our
commitment to beating the world’s most potent threats.

Together with our network of the top channel partners and over
200 service providers, we're on a mission to make sure everyone

has the enterprise-grade cyber security we all need. Founded in
1988, F-Secure is listed on the NASDAQ OMX Helsinki Ltd.

f-secure.com | twitter.com/fsecure | linkedin.com/ f-secure

—
F-Secure. Q¥

