
Malware analysis
report

In this document we analyze a set of 32-bit samples
which represents stage #1 of the complex threat that is
known as Regin. Based on our analysis of the malware’s
functionalities, this part of the Regin threat can be
considered just a support module — its sole purpose
is to facilitate and enable the operations of stage #2
by loading it and making it more difficult to detect by
security products.

Regin’s stage #1 targets the Windows platform and
support various versions of the operating system,
beginning with Windows NT 4.0. Based on our analysis,
the samples may be classified into two categories: “pure”
samples that do not feature any extra, non-malicious
code; and “augmented” ones which feature malware
code as part of another device driver. The existence of
“augmented” samples indicates the intention of the
attacker to remain undiscovered for as long as possible.

When activated, samples of Regin stage #1 will
retrieve encrypted content from specific locations of
an already compromised system, map it into kernel
memory and transfer control to it. In terms of technical
sophistication, stage #1’s import resolution process is
of particular interest, as the malware uses the unusual
“trampoline” technique to mask the payload’s access to
API functions.

It is clear that this support component, that represents
the initial stage of a very complex threat, has been
instrumental in securing long-term persistence in the
attacks that made use of this threat.

Paolo Palumbo
Senior Researcher
Security Response
F-Secure Labs
Twitter: @paolo_3_1415926

Contact
F-Secure Incident Response
irt@f-secure.com

W32/Regin, Stage #1

1. INTRODUCTION 2
1.1 Sample Statistics 2

2. MALWARE ANALYSIS 2
2.1 Deployment and startup 3
2.2 Sample selection 3
2.3 Content retrieval 3
2.4 Retrieval from the file system (Extended Attributes) 4
2.5 Retrieval from the registry 4
2.6 Decryption 4
2.7 Content mapping 4
2.8 The QuickPeParse function 5
2.9 Header and sections 5
2.10 Imports & Trampolines 6

2.10.1 Embedded code templates 7
2.10.2 Locating a safe location inside a trusted module 7
2.10.3 Code template customization 8
2.10.4 Trampolines 8

2.11 The CodeProtection structure 8
2.12 Relocations 8
2.13 Finalizing the loading process 9
2.14 Invocation of stage #2 10

3. CONCLUSIONS 10
APPENDIX A: SAMPLE STATISTICS 11
APPENDIX B: MEMSET SYSTEM CALL TRANSITION 14

tlp: wHite

mailto:irt@f-secure.com

2

F-Secure malware analySiS report

1. introDUCtion

In this document we describe the technical characteristics
of a set of 27 32-bit samples of Regin’s stage #1 component.

We first extract and collect a set of high level information
from these samples to obtain a general overview of their
structure. Based on this overview, we propose using two
distinct grouping criteria to facilitate working with these
samples. A single sample is then selected and analysed in
detail; its functionalities are isolated and presented here,
together with relevant portions of its code.

1.1 sample statistics

Our analysis covers a collected set of 27 32-bit Portable
Executable (PE) files for the Microsoft Windows operating
system. All 27 samples are device drivers, designed to work
at the kernel level.

Based on the code structure of the samples, they can be
roughly categorized into two groups:

 y “Pure” — does not feature any extra code beside the
malicious one

 y “Augmented” — the malware code is present in
combination with code from a legitimate device driver

Some “augmented” samples seem to be derived from
Microsoft device drivers, with modifications to drive the
execution towards the malicious code.

Of the 27 samples, 20 of them (or 74%) are “pure”; only 7
samples can be classified as are “augmented”. Despite the
small amount of samples at our disposal, it is possible to
speculate that the disproportion between the number of
“pure” and “augmented” samples reflects the additional
complexity associated with creating the “augmented”
samples. Another possibility is that “augmented” samples
represent a particular stage of development or have
served a particular purpose, and for this reason they are
fewer in number; this suspicion might be confirmed by the
compilation date as extracted from the samples’ PE header.

Analysis of the resources also shows that the “augmented”
binaries are masked as binaries for Windows NT 5.2.3790,
also known as Windows Server 2003. This hints to the
fact that the attackers might have used these samples to
specifically target machines running this particular version
of Windows.

It also interesting to consider the filenames of the samples
as they were observed in the wild or during submission for
analysis. In 12 cases (44% of samples), the decoy names used
by the files was “usbclass.sys”. [1] This particular name was
used only for “pure” samples (though not all such samples
used this name). It is our opinion that this particular name
was selected to allay any suspicions on the victim’s part, if
the file was discovered.

Following detailed analysis of a selected reference sample
(presented in later sections), we were able to group samples
based on differences in their code from the analysed
sample. We define the distance function between our
reference sample and other samples as:

Using this metric, we determined there were three
categories among the 27 samples at our disposal. A set of 13
samples out of 26 [2], which was assigned the label “variant
#1”, alongside the reference sample, were extremely close
to the reference, with distances between 89% and 100%. 7
out of 26 samples (labelled “variant #2”) were very distant
from the reference sample [3], with a consistent distance
of 2.63%. Finally, the last 7 samples (labelled “variant #3”)
showed distances between 41% and 53% from the reference
sample. While samples belonging to “variant #2” or “variant
#3” were not analyzed in detail, preliminary analysis shows
that they all possess the same functionalities, but their code
is notably different at the function level.

A final observation is that all the “augmented” samples
belong to “variant #1”, according to this classification
method. The full data matrix regarding the samples is
provided in Appendix A for the interested reader.

2. Malware analysis

This section presents a detailed analysis of a selected
sample from the set of samples for Regin’s stage #1, which
later serves as a reference for further analysis of other
samples.

1 There exists a small number of references to a Logitech device driver with the name “usbclass.sys”. Were these
references to be correct, it could be speculated that the malware authors may have wanted to use a name that
would survive a simple investigation attempt done by, say, using an internet search engine.

|〖functions〖
sample

reference

 ∩ functions
sample

 |
d(sample)〖:〖=

|〖functions
〖sample

〖
reference

 |

W32/Regin, stage #1

3

2.1 Deployment and startup

At the time of writing, it is not known how the Regin
stage #1 samples are deployed to the target system. Our
analysis of the samples’ system interactions showed no
evidence to indicate that they are any different from other
device drivers; we therefore believe that these samples are
installed, registered and invoked as with any other device
driver.

2.2 sample selection

The analysis in this section focuses on the sample with MD5
26297dc3cd0b688de3b846983c5385e5, which was chosen
for two reasons: first, the sample was among the first few

we retrieved, and second, it was the only “pure” sample in
that particular set. A “pure” sample has the advantage of
being self-contained, smaller in size and independent from
any other code.

2.3 Content retrieval

Almost immediately after receiving control, the malware’s
code will attempt to locate its payload from the already
infected system. The malware will scan selected locations
in both the file system and the registry. These locations
are hardcoded inside the binary itself under a layer of
simple encryption. The logic for content retrieval can be
represented by a simplified flowchart (Chart 1).

 2 The total number of samples is 26 because the reference sample has been excluded.
3 It is clear that d (sample reference) = 1.

Chart 1: Flowchart of content retrieval logic

4

F-Secure malware analySiS report

2.4 retrieval from the file system (extended
attributes)

Regin’s stage #1 component relies on the concept of
‘Extended Attributes’ to store its payload on the file-system.
Extended Attributes are a list of name-value pairs that can
be associated to New Technology File System (NTFS) files
and directories.

The malware retrieves the list of extended attributes
associated with the provided full path to a directory or file.
This list is then iterated and each element is inspected. The
malware expects to retrieve the content from extended
attributes named as “_”. If that condition is met, the value
is then extracted. It should be noted that the content may
be split between extended attributes belonging to two
different NTFS objects. An example file-system location is
the following:

 <WINDOWS>\Cursors

The use of Extended Attributes was not observed in
malware until the recent emergence of the ZeroAccess
rootkit [4]. As the Regin threat appears to have emerged
earlier than ZeroAccess however, we are convinced that
significant skills, knowledge and resources were available to
the developers of Regin to enable earlier use of this unusual

technique.

2.5 retrieval from the registry

If Regin’s stage #1 is unable to retrieve payload content
from the file-system, the malware will turn its attention to
the registry. Regin’s stage #1 malware samples contain a
hardcoded registry path and value name to be used as a fall-
back location for content retrieval. In this case, the sought

content is simply the value of the provided key/value-name
combination.

An example registry location is:

\REGISTRY\Machine\System\CurrentControlSet\
Control\RestoreList:VideoBase

If both content retrieval attempts are unsuccessful, the
malware will not perform any additional operation until
its next invocation, when it will again attempt to retrieve
content from either the file-system or the registry.

2.6 Decryption

The encryption used to protect the content in the file
system or registry is a XOR based algorithm, specific to
this malware family. Regin’s stage #1 body contains the key
needed for payload decryption. The code for the payload’s
decryption routine is presented in Image 1.

After decryption, the malware quickly verifies the payload is
correct, in order to avoid attempting to map something for
execution when it is obviously invalid (Image 2).

2.7 Content mapping

Once the payload is in clear text, Regin’s stage #1 proceeds
to map it so that it can be executed. The mapping process
follows the logic of the operating system’s PE loader.

Regin’s stage #1 PE loader is quite comprehensive;
considering the suspected age of the threat, the generic
nature of the PE loader and the fact that the PE loading
happens completely in kernel mode, we can speculate that
the authors of this threat are skilled and well-funded.

4 Symantec Response blog; Mircea Ciubotariu; Trojan.Zeroaccess.C Hidden in NTFS EA; published 14 Aug 2012;
http://www.symantec.com/connect/blogs/trojanzeroaccessc-hidden-ntfs-ea

Image 2: Payload verification code

Image 1: Content decryption loop

W32/Regin, stage #1

5

2.8 the Quickpeparse function

Of particular interest is a specific helper function that
is widely used by Regin’s stage #1 in association with PE
manipulation.

The helper function quickly verifies the validity of a PE file,
while at the same time recovering information (Image 3)
useful to anyone willing to load or programmatically process
a PE file.

Given the number of times Regin’s stage #1 needs to retrieve
PE-related information, this subroutine is a great help in

Image 3: Code recovered for the QuickPeParse function

simplifying the code and avoiding dangerous mistakes. This
is, again, possibly additional confirmation of the attacker’s
skills.

2.9 Header and sections

This part of the loading process is performed in a fairly
standard way. Regin’s stage #1 begins the loading process by
verifying that its payload is a valid PE file. If this verification
is successful, the malware retrieves the value of the
SizeOfImage field from the OptionalHeader of the PE file,
then allocates a number of bytes equivalent to this value.

6

F-Secure malware analySiS report

Image 5: Missing replacements for mem* functions

Image 4: Calculating the delta

The payload will be mapped to this memory region.

Before proceeding any further, Regin’s stage #1 calculates
the delta (Image 4) between the address of the memory
region it allocated for the memory mapped image and the
preferred ImageBase retrieved from the OptionalHeader.
This information will be used later during the mapping
process, in case relocations need to be processed.

With these operations completed, the headers are mapped
first, followed sequentially by each of the PE file sections.
This process is relatively straightforward.

It is to be appreciated that the majority of the operations
described above rely at some level on QuickPeParse’s
results.

On another note, in this section of the code we begin to see
references to missing replacements for mem* functions.

The absence of the mem* replacements does not affect
the malware’s ability to proceed with the execution, as the
code falls back to standard API functions (Image 5). Such
code constructs are encountered extensively throughout
the remainder of the code. Our opinion on this matter is
that the replacement functions would provide augmented
logging when dealing with memory operations; their
absence is possibly the result of conditional compilation.
Such an explanation would further the belief that the
authors of this malware are experienced developers.

2.10 imports & trampolines

Import resolution is the crucial part for achieving Regin
stage #1’s goal of hiding the originator of system calls
from external observers. The loader will correctly resolve
the address of imported functions, but will embed these
addresses in so-called ‘trampoline’ code. Addresses to
the trampolines are instead added to the Import Address
Table (IAT). From there, the execution will traverse different

pieces of code, eventually triggering the requested external
subroutine before finally returning to the payload.

Before getting into details, it is important to have an idea of
how the trampolines work from a high-level perspective.

A trampoline transition can be summarized as follows:

1. Payload invokes “resolved” external subroutine
2. Trampoline code receives control

a. Trampoline code retrieves the previously-
resolved real address of the external subroutine

b. Trampoline invokes the pre-API call code

3. Pre-API call code prepares the environment to make
the function call return to trusted location inside
trusted module

a. Pre-API call code invokes the external
subroutine

4. External subroutine performs its duty
a. External subroutine returns

5. Execution lands in appropriate part of trusted
module

6. Jump to post-API call code is executed
7. Post-API call code receives control

a. Post-API call code restores the environment for
payload

b. Post-API call code transfers control back to
payload, as would normally happen after a call
to an external subroutine

8. Payload continues its operations

In the following subsections we will discuss the details
of how the malware retrieves and pieces together all the
information required to produce and install the trampolines.

Appendix B contains a diagram detailing a complete
transition between the payload and an external module
exporting a function.

W32/Regin, stage #1

7

2.10.1 embedded code templates

The stage #1 malware uses predefined code for pre-API-call
and post-API-call operations. This code is embedded in
the binary and is almost ready for use, but it requires some
customization to account for differences when it comes to
memory addresses.

The malware is aware of the start address of both pieces
of code inside its own body, and has a rough idea of the
size of the two code portions. The builder code contains
wrong values for the size of both templates. This is most
likely a remnant of a previous code version that contained
templates that were bigger.

With this information, the malware scans those sections of
code looking for specific DWORDs that mark locations that
need customization.

As an example, we report a screenshot of the post-API-
call code (Image 6). The value of 0x99119911 as the second
operand of the last instruction in this code portion is a
placeholder that acts as a marker for the builder code.

The offset of the values needing customization are marked
by the values:

 y pre-API-call code:

◊ 0x66116611

◊ 0x77117711

◊ 0x88118811

 y post-API-call code:

◊ 0x99119911

The addresses of such markers relative to the beginning of
the owner code portion are recorded for later use. After all
the information is recorded, Regin’s stage #1 copies both
the pre-API-call and the post-API-call code portions to
newly allocated memory regions.

2.10.2 locating a safe location inside a trusted
module

For the trampolines to be successful, a safe location inside
a trusted kernel module needs to be found. After the
trampolines are in place, the affected module will be the
one that is seen and “blamed” by an external observer every
time the payload executes a call to an external subroutine.

To find this location, Regin’s stage #1 scans all the sections
that are executable and non pageable from a set of trusted
modules. This set of modules includes:

 y NTOSKRNL.EXE

 y HAL.dll

 y Disk.sys

 y Atapi.sys

These memory regions are scanned for a specific set of
bytes. The sought after combinations are listed below,
together with their assembly representation.

 y 0xFF, 0x26: jmp dword ptr [esi]

 y 0xFF, 0x27: jmp dword ptr [edi]

 y 0xFF, 0x66: jmp dword ptr [esi+bb]

 y 0xFF, 0x67: jmp dword ptr [edi+bb]

 y 0xFF, 0xA6: jmp dword ptr [esi+dddddddd]

 y 0xFF, 0xA7: jmp dword ptr [edi+dddddddd]

 y 0xFF, 0xE6: jmp esi

 y 0xFF, 0xE7: jmp edi

The assembler representations make the malware’s purpose
quite clear. The malware will arrange for the system call to
return to this particular location inside a trusted module,
fooling any external observer who may be monitoring the
return address to identify the module originating the call to
the external subroutine. Executing the code at this location
will make the CPU execute the jump operation, which will
eventually lead back to the payload’s code.

If any of the two bytes sequences presented above is found
in the code of a trusted module, and if the surrounding
code passes further safety checks, its address is recorded.

Depending on the specific byte combination found,
additional information may be retrieved or calculated; for
example, in the case of a jmp dword ptr [edi+xxxxxxxx], the
immediate part of the operand is retrieved for calculating
the delta between that value and the location containing
the address of the post-API-call. The calculated delta value
will be assigned to the EDI register so that the execution will
flow smoothly.

Image 6: Post-API-call code

8

F-Secure malware analySiS report

Image 7: Trampoline memory allocation

If none of these sequences are found, the search continues
in other sections and trusted modules. If no suitable
location is available, Regin’s stage #1 will simply terminate its
execution.

2.10.3 Code template customization

Once the safe location in a trusted module has been located
and its address and type retrieved, Regin’s stage #1 can
customize the copies of the pre- and post-API-call code
templates.

Each of the values is customized as follows:

 y 0x66116611: delta value to be applied to ESI/EDI register
so that the jump instruction at the safe location will lead
the execution back to the post-API-call code

 y 0x77117711: address of the safe jump location

 y 0x88118811: nothing, used only as an end marker

 y 0x99119911: not specifically replaced, but parts of it are
overwritten with the address of post-API-call code if the
safe location involves an indirect jump

2.10.4 trampolines

Trampolines are the mechanism that Regin’s stage #1 uses to
reroute the execution through several pieces of code every
time the payload executes a call to an external function.
There exists a trampoline for each individual imported
function, and the trampolines are stored sequentially in
memory and accessed as an array.

Each trampoline is constructed from the following
template:

 mov eax, d1d1d1d1
jmp $+d2d2d2d2

The values “d1d1d1d1” and “d2d2d2d2” are placeholders that
will be replaced during actual import resolution with the
relevant information. In particular, the two values will be
replaced with the following information:

 y d1d1d1d1: replaced with the address of the external
function from the third party module (for example:
NTOSKRNL.EXE!memcpy)

 y d2d2d2d2: replaced with the offset of the pre-API-call
code segment, relative to the instruction after the jmp

During import resolution, each item to resolve is fetched
and its address retrieved. The address is then used to fill
a trampoline as described above. Finally, the address of
the trampoline is added to the IAT of the module being
mapped in place of the resolved address. Please note that,
as is logical, this process is only executed for symbols
whose address lies in a section that is flagged as executable.
Other symbols are not protected by trampolines and their
addresses are added directly to the IAT.

The described trampoline mechanism clearly provides
transparent protection to the payload.

2.11 the Codeprotection structure

This structure links together all the pieces involved with the
protection of the payload. It is added, for example, to the
payload’s data directory information and it is used for most
of the computations performed by Regin’s stage #1. The
structure is defined as follows:

Image 8: CodeProtection structure

2.12 relocations

The next step of the payload loading process is for the
malware to process the possible relocations of the mapped
payload.

To carry out this operation, the dedicated code needs
to process the base relocation table for the payload.
Additionally, it makes use of the previously calculated delta
between the current image base and the preferred image
loading address.

W32/Regin, stage #1

9

Image 9: Scanning the payload’s DATA_DIRECTORIES

The PE loader supports only two specific base relocation
types, IMAGE_REL_BASED_HIGHLOW and IMAGE_REL_
BASED_DIR64. However, this level of support is enough
to guarantee the loading of binaries produced by recent
toolchains.

As a matter of fact, the loader’s support of the relocation
type IMAGE_REL_BASED_DIR64 gives us the firsts hint
that a 64-bit version of the Regin framework may exist, in
combination with 64-bit additional stages.

2.13 Finalizing the loading process

As the final step in the loading process, the malware
scans the payload’s DATA_DIRECTORIES to perform a final
modification to the mapped image.

The modification consists of setting the VirtualAddress
of the selected DATA_DIRECTORY to the address of the
previously mentioned CodeInjection structure. Additionally,
the Size field of the selected DATA_DIRECTORY is set to a

10

F-Secure malware analySiS report

special value, 0xFEDCBAFE (renamed MALWARE_MARKER_
DATA_DIR_SIZE in Image 9).

A suitable DATA_DIRECTORY is one which satisfies the
following conditions:

 y The particular data directory is not in use
(VirtualAddress and Size must be 0)

 y The directory should not be among the following
directories:

◊ EXPORT

◊ IMPORT

◊ IMPORT ADDRESS TABLE (IAT)

◊ DELAY-LOAD IMPORT TABLE

It is clear that the malware selects the data directory
with special care, specifically to avoid interference
with interactions between the mapped payload and its
dependencies.

2.14 invocation of stage #2

With the payload fully mapped into memory and the
trampoline mechanism set up to mask the malware’s access
to external subroutines, Regin’s stage #1 is ready to transfer
control to the next stage.

This is done by calculating the address of stage #2’s entry
point and calling that location.

3. ConClUsions

Our analysis of the Regin’s stage #1, as detailed in this
document, shows that this component of the Regin
framework is designed to retrieve an additional payload
(stage #2) from an already compromised system, map it into
kernel memory and execute it.

During the loading process, Regin’s stage #1 will hide
the payload’s invocations of function exported by other
modules using an unusual ‘trampoline’ mechanism. In this
way, the malware manages to effectively fool an external
observer into thinking that calls to API functions are being
performed by one of a set of ‘trusted’ modules, thereby
allaying suspicion of the payload’s activities.

The utilitarian nature of the malware makes it obvious that
this is a support module, designed to hide the presence of
an additional stage.

Attempting attribution based on this single component
is particularly challenging, as Regin’s stage #1 is purely
a support module, with very little content other than
executable code. In the case of the “augmented” samples,
the benign device driver used as a base offers little to
nothing in terms of information that could help identifying
the author(s).

That said, based on the code structure, we suspect that
Regin’s developers may be experienced and skilled.
Statistical analysis of the 27 samples in our collection
suggest that the three different types of stage #1 samples
we identified may have been the product of iterative
development.

The fact that the malware supports even Windows NT4
targets suggests that this malware is designed to work
against a wide set of targets, each running different versions
of the Windows operating system in their environment. We
believe however that at some point the attackers directed
their efforts towards machines running Windows NT
5.2.3790, also known as Windows Server 2003.

W32/Regin, stage #1

11

appenDiX a: saMple statistiCs

Below is the full data matrix for the 27 Regin samples collected.

no. MD5 HasH known FilenaMe type

1 26297DC3CD0B688DE3B846983C5385E5 plain

2 47D0E8F9D7A6429920329207A32ECC2E abiosdsk.sys embedded

3 01C2F321B6BFDB9473C079B0797567BA ser8uart.sys embedded

4 4B6B86C7FEC1C574706CECEDF44ABDED usbclass.sys plain

5 744C07E886497F7B68F6F7FE57B7AB54 floppy.sys, atdisk.sys embedded

6 2C8B9D2885543D7ADE3CAE98225E263B usbclass.sys plain

7 F3FFC2AAAA1E2AB55EC26FF098653347 atdisk.sys embedded

8 E94393561901895CB0783EDC34740FD4 plain

9 BFBE8C3EE78750C3A520480700E440F8 pcidump.sys plain

10 89003E9A1AE635C97EBAD07AEBC67F00 usbclass.sys plain

11 1800DEF71006CA6790767E202FAE9B9A abiosdisk.sys embedded

12 90FECC6A89B2E22D82D58878D93477D4 atdisk.sys embedded

13 DB405AD775AC887A337B02EA8B07FDDC parclass.sys embedded

14 6662C390B2BBBD291EC7987388FC75D7 usbclass.sys plain

15 06665B96E293B23ACC80451ABB413E50 rdpmdd.sys plain

16 FFB0B9B5B610191051A7BDF0806E1E47 pciclass.sys plain

17 187044596BC1328EFA0ED636D8AA4A5C usbclass.sys plain

18 B29CA4F22AE7B7B25F79C1D4A421139D pciport.sys, usbclass.sys plain

19 D240F06E98C8D3E647CBF4D442D79475 usbclass.sys plain

20 8FCF4E53ECE6111758A1DD3139DC7CAD plain

21 148C1BB9D405D717252C77593AFF4BD8 usbclass.sys plain

22 1C024E599AC055312A4AB75B3950040A usbclass.sys plain

23 B269894F434657DB2B15949641A67532 usbclass.sys plain

24 BA7BB65634CE1E30C1E5415BE3D1DB1D usbclass.sys plain

25 22BFC970F707FD775D49E875B63C2F0C plain

26 B505D65721BB2453D5039A389113B566 usbclass.sys plain

27 049436BB90F71CF38549817D9B90E2DA usbclass.sys plain

12

F-Secure malware analySiS report

no. ConFig #1 ConFig #2 ConFig #3 ConFig #4

1 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{9B9A8ADB-8864-4BC4-8AD5-B17DFDBB9F58}

Class <WINDOWS> <WINDOWS>\fonts

2 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS>\security <WINDOWS>Temp

3 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS>\repair <WINDOWS>\msagent

4 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

5 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS>\msapps <WINDOWS>\Help

6 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

7 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS>\msagent <WINDOWS>\msagent\chars

8 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS>\msapps <WINDOWS>\Help

9 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

10 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

11 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS>\security <WINDOWS>\Temp

12 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS>\msagent <WINDOWS>\msagent\chars

13 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS>\Temp <WINDOWS>\inf

14 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

15 \REGISTRY\Machine\System\CurrentControlSet\Control\
RestoreList

VideoBase <WINDOWS>\Cursors <WINDOWS>\fonts

16 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{9B9A8ADB-8864-4BC4-8AD5-B17DFDBB9F58}

Class <WINDOWS> <WINDOWS>\fonts

17 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

18 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

19 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

20 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

21 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

22 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

23 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

24 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

25 \REGISTRY\Machine\System\CurrentControlSet\Control\
Session

{5D42A36B-12C4-
DE7C-4BD1-
0612BD1CF324}

<WINDOWS>\Spool\
Printers

<SYSTEM>\CertSrv

26 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{4F20E605-9452-4787-B793-D0204917CA58}

Class <WINDOWS> <WINDOWS>\fonts

27 \REGISTRY\Machine\System\CurrentControlSet\Control\
Class\{9B9A8ADB-8864-4BC4-8AD5-B17DFDBB9F58}

Class <WINDOWS> <WINDOWS>\fonts

W32/Regin, stage #1

13

no. resoUrCes? nUMber oF
resoUrCes

FUnCtion
MatCH

siMilarity
sCore variant notes

1 No n/a 76 100 1 Analyzed sample

2 Yes 2 68 89.47368421 1

3 Yes 1 68 89.47368421 1

4 Yes 1 72 94.73684211 1

5 Yes 2 69 90.78947368 1

6 Yes 1 68 89.47368421 1

7 Yes 2 68 89.47368421 1

8 Yes 1 68 89.47368421 1

9 No n/a 76 100 1

10 Yes 1 69 90.78947368 1

11 Yes 2 69 90.78947368 1

12 Yes 2 69 90.78947368 1

13 Yes 1 69 90.78947368 1

14 No n/a 2 2.631578947 2

15 No n/a 2 2.631578947 2

16 No n/a 2 2.631578947 2

17 No n/a 2 2.631578947 2

18 No n/a 2 2.631578947 2

19 No n/a 2 2.631578947 2

20 No n/a 2 2.631578947 2

21 No n/a 37 48.68421053 3

22 No n/a 31 40.78947368 3

23 No n/a 40 52.63157895 3

24 No n/a 31 40.78947368 3

25 No n/a 31 40.78947368 3

26 No n/a 40 52.63157895 3

27 No n/a 40 52.63157895 3

14

F-Secure malware analySiS report

appenDiX b: MeMset systeM Call transition

HEADER

CODE

...

IAT

ADDR: call dword ptr [IAT:NTOKRNL.EXE!MEMSET]

ADDR + 6: ...

NTOSKRNL.EXE!MEMSET:
off MEMSET_TRAMPOLINE

TRAMPOLINES

mov eax, off NTOSKRNL.EXE!MEMSET
jmp pre-api-call code

mov eax, off NTOSKRNL.EXE!MEMCPY
jmp pre-api-call code

pre-api-call code:
 cmp esp,ebp
 jnl 0x2307d
 push edi
 push esi
 push ebx
 mov esi,esp
 add esi,0xc
 push ebp
 push dword 0x0
 mov ebx,esp
 push ecx
 push edx
 mov ecx,ebp
 sub ecx,esi
 cmp ecx,0x4
 jl 0x23076
 push eax
 push edx
 push ebx
 mov eax,0xf
 imul eax,eax,0x4
 cmp eax,ecx
 jnl 0x2302d
 mov ecx,eax
 mov edx,0x0
 mov eax,ecx
 mov ebx,0x4
 idiv ebx
 dec eax
 push dword 0x0
 cmp eax,0x0
 jnz 0x2303b
 add esp,ecx
 pop ebx
 pop edx
 pop eax
 mov ebp,esp
 mov edi,esp
 sub edi,ecx
 mov esp,edi
 rep movsb
 mov [ebx],esp
 mov ecx,[ebx-0x4]
 mov edx,[ebx-0x8]
 mov dword [ebx-0x4],0x0
 mov dword [ebx-0x8],0x0

; Change the original return address
; to the selected jump instruction in
; the safe module
 mov dword [esp],SAFE_MODULE!SAFE_LOCATION

; Apply the correct DELTA to the
; required register to satisfy the
; operand immediate at safe location
 mov edi,DELTA
 jmp eax ; NTOKRNL.EXE!MEMSET

NTOSKRNL.EXE!MEMSET:
 ...
 ret

SAFE_MODULE!SAFE_LOCATION:

; Indirect jump to
; of post-api-call
 jmp [edi-0x78740008] ;

post-api-call code:
 mov ecx,esp
 sub ecx,[ebp+0x8]
 sub ecx,0x4
 mov esp,ebp
 add esp,0xc
 pop ebp
 pop ebx
 pop esi
 pop edi
 pop edx
 add esp,ecx
 jmp edx ; Jump back

Off post-api-call code

	1. INTRODUCTION
	1.1 Sample Statistics

	2. MALWARE ANALYSIS
	2.1 Deployment and startup
	2.2 Sample selection
	2.3 Content retrieval
	2.4 Retrieval from the file system (Extended Attributes)
	2.5 Retrieval from the registry
	2.6 Decryption
	2.7 Content mapping
	2.8 The QuickPeParse function
	2.9 Header and sections
	2.10 Imports & Trampolines
	2.10.1 Embedded code templates
	2.10.2 Locating a safe location inside a trusted module
	2.10.3 Code template customization
	2.10.4 Trampolines

	2.11 The CodeProtection structure
	2.12 Relocations
	2.13 Finalizing the loading process
	2.14 Invocation of stage #2

	3. CONCLUSIONS
	APPENDIX A: SAMPLE STATISTICS
	APPENDIX B: MEMSET SYSTEM CALL TRANSITION

